w abeomics

32-20593: Recombinant Human sDLL-4(Discontinued)

Reactivity : Mouse

Alternative Name : soluble DLL-4, Delta-like protein 4, Drosophila Delta homolog 4

Description

Source:HEK293 cells

Human sDLL-4 comprises the extracellular signaling domain of DLL, a member of a structurally-related family of single-pass type I transmembrane proteins that serve as ligands for Notch receptors. DLL-4 functions to specifically activate the Notch-1 and Notch-4 receptors. The Notch signaling pathway regulates endothelial cell differentiation, proliferation and apoptosis, and is essential for the development, maintenance and remodeling of the vascular system. Targeted deletion of the DLL-4 gene in mice resulted in severe vascular defects and death before birth. Up-regulation of DLL-4 expression has been implicated in the vascular development of certain tumors. The human DLL-4 gene consists of a 503 amino acid extracellular domain with one DSL domain, eight EGF-like repeats, a 21 amino acid transmembrane domain, and a 135 amino acid cytoplasmic domain. Recombinant Human sDLL-4 is a 54.3 kDa glycoprotein containing 498 amino acid residues.

Product Info

Amount :5 μg / 25 μgPurification :Purity:>= 95% by SDS-PAGE gel and HPLC analyses.Content :This recombinant protein is supplied in lyophilized form.Amino Acid :SGVFQLQLQE FINERGVLAS GRPCEPGCRT FFRVCLKHFQ AVVSPGPCTF GTVSTPVLGT NSFAVRDDSS
GGGRNPLQLP FNFTWPGTFS LIIEAWHAPG DDLRPEALPP DALISKIAIQ GSLAVGQNWL LDEQTSTLTR
LRYSYRVICS DNYYGDNCSR LCKKRNDHFG HYVCQPDGNL SCLPGWTGEY CQQPICLSGC
HEQNGYCSKP AECLCRPGWQ GRLCNECIPH NGCRHGTCST PWQCTCDEGW GGLFCDQDLN
YCTHHSPCKN GATCSNSGQR SYTCTCRPGY TGVDCELELS ECDSNPCRNG GSCKDQEDGY
HCLCPPGYYG LHCEHSTLSC ADSPCFNGGS CRERNQGANY ACECPPNFTG SNCEKKVDRC
TSNPCANGGQ CLNRGPSRMC RCRPGFTGTY CELHVSDCAR NPCAHGGTCH DLENGLMCTC
PAGFSGRRCE VRTSIDACAS SPCFNRATCY TDLSTDTFVC NCPYGFVGSR CEFPVGLP

Application Note

The sDLL-4, when immobilized at concentrations >1.5 \tilde{A} $\hat{A}\mu g/mL$, will inhibit myogenesis in C2C12 cells.