

9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982

Email: info@abeomics.com

12-4203: Phospho-Chk1 (Ser345) (Clone: R3F9) rabbit mAb FITC conjugate

Clonality: Monoclonal Clone Name: Chk1S345-R3F9

Application: **FACS**

Reactivity: Human, Mouse

Conjugate: FITC

Format: Conjugated

Serine/threonine-protein kinase Chk1, CHK1 checkpoint homolog, Cell cycle checkpoint kinase, **Alternative Name:**

Checkpoint kinase-1, CHEK1

Isotype: Rabbit IgG1k

A synthetic phospho-peptide corresponding to residues surrounding Ser345 of human phospho Immunogen Information:

Description

The act of DNA damaged response and cell cycle checkpoints requires the activation of four protein kinases that form the canonical ATR-Chk1 and ATM-Chk2 pathways. ATR activation requires the generation of structures containing single strand DNA (ssDNA) adjacent to double strand DNA (dsDNA). Such ssDNA is coated with replication protein A complex and attracts ATR (1,2). The accumulation of ATR to damage sites results in initial activation of ATR. ATR phosphorylates proteins at the ssDNA which are called checkpoint regulators. The accumulation and phosphorylation of these checkpoint regulators further stimulates the catalytic activity of ATR. ATR-induced Chk1 phosphorylation likely occurs at the sites of DNA damage on chromatin (3-5). The activated ATR phosphorylates Ser317 and Ser345 of phospho Chk1 in its C-terminal regulatory domain. Phospho Chk1 is critical for DNA damage checkpoint activation, replication control, and cell viability (6-8). Functionally, ATRmediated phosphorylation elevates Chk1 catalytic activity. The N-terminal catalytic domain of Chk1 adopts an open kinase conformation and the deletion of C-terminal domain increases Chk1 catalytic activity.

Product Info

Amount: 10 Tests / 100 Tests

Content: 1X PBS, 0.09% NaN3, 0.2% BSA

Storage condition: Store at 2-8°C. Avoid repeated freeze and thaw cycles.

Application Note

For flow cytometric staining, the suggested use of this reagent is 5 µL per million cells or 5 µL per 100 µL of staining volume. It is recommended that the reagent be titrated for optimal performance for each application.

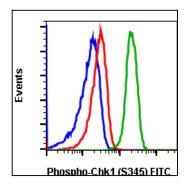


Fig-1: Flow cytometric analysis of HLa cells, untreated and unstained as negative control (blue) or untreated and stained (red) or treated with UV+TPA and stained (green) using Phospho-Chk1(S345) antibody Chk1S345-R3F9 FITC conjugate.