

9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982

Email: info@abeomics.com

32-18399: Human IFNA2 Protein, hFc Tag

Uniprot ID: P01563

Alternative Name: IFNA; IFNA2B; leIF A; IFN-alphaA; IFN-alpha-2

Description

Description: Recombinant human IFNA2 Protein with C-terminal human Fc tag

Background : This gene is a member of the alpha interferon gene cluster on chromosome 9. The encoded cytokine is a member of the type I interferon family that is produced in response to viral infection as a key part of the innate immune response with potent antiviral, antiproliferative and immunomodulatory properties. This cytokine, like other type I interferons, binds a plasma membrane receptor made of IFNAR1 and IFNAR2 that is ubiquitously expressed, and thus is able to act on virtually all body cells. The encoded protein is effective in reducing the symptoms and duration of the common cold and in treating many types of cancer, including some hematological malignancies and solid tumors. A deficiency of type I interferon in the blood is thought to be a hallmark of severe COVID-19 and may provide a rationale for a combined therapeutic approach.

Molecular Characterization: mass of 45.4 kDa after removal of the signal peptide. The apparent molecular mass of IFNA2-hFc is approximately 55-70 kDa due to glycosylation.

Tag: C-Human Fc tag

Storage condition:

Product Info

Amount: 50 μg / 100 μg

Purification: The purity of the protein is greater than 95% as determined by SDS-PAGE and Coomassie blue

staining.

Content: Lyophilized from sterile PBS, pH 7.4. Normally 5 % - 8% trehalose is added as protectants before

lyophilization.

Store at -20°C to -80°C for 12 months in lyophilized form. After reconstitution, if not intended

for use within a month, aliquot and store at -80°C (Avoid repeated freezing and thawing).

Lyophilized proteins are shipped at ambient temperature.

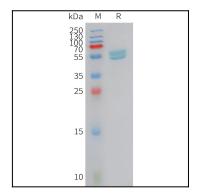


Figure 1. Human IFNA2 Protein, hFc Tag on SDS-PAGE under reducing condition.